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THE EFFECT OF COUPLE-STRESSES ON THE CORNER
SINGULARITY DUE TO AN ASYMMETRIC SHEAR LOADING*

D. B. BOGY and ELI STERNBERG

California Institute of Technology

Abstract-The plane-strain problem of an orthogonal elastic wedge, one face of which is subjected to arbitrary
shearing tractions in the absence of other loads, is treated both within classical elastostatics and within a linear
theory of elastic behavior that takes into account the influence of couple-stresses. If the loading fails to vanish at
the apex, the conventional theory gives rise to corner singularities in the stress and rotation field, which stem from
the incompatibility of the assumed boundary conditions with the symmetry of the stress tensor. These singularities
are determined in closed elementary form and are found to agree with earlier results due to E. Reissner for the case
of a uniform shear loading. It is shown next that the foregoing singularities disappear according to the couple­
stress theory, in which the stress tensor is no longer required to be symmetric.

INTRODUCTION

THE linearized couple-stress theory of elastic behavior, explored by Mindlin and Tiersten
[IJ, was applied in [2-4J to the solution of various singular plane-strain problems. The
studies contained in [2-4J which are continued in the present paper, aim at the extent to
which the pathological predictions of classical elastostatics in connection with singular
stress-concentration problems are modified in the presence of couple-stresses.

The particular plane-strain problem to be considered here concerns a homogeneous
and isotropic orthogonal elastic wedge (quarter-plane). One of the two wedge faces is
subjected to an essentially arbitrary continuous distribution of shearing tractions, while all
remaining surface tractions-as well as the body forces and body couples-are required to
vanish identically.

In Section 1 we treat the foregoing problem within the classical theory of elasticity and
use the Mellin transform to deduce an integral representation for the desired stress and
rotation field. This integral representation is subsequently employed to examine the
asymptotic behavior of the solution in the vicinity of the wedge corner. If the given shear
loading fails to vanish at the corner, the assumed boundary conditions are incompatible
with the prevailing symmetry of the stress tensor: in this instance the asymptotic analysis
reveals the presence of a finite discontinuity in the stress field and a logarithmic infinity in
the rotation field at the apex of the wedge. The detailed structure of these singularities is
furnished in closed elementary form by the dominating terms in the asymptotic estimates
obtained. As is to be anticipated on intuitive grounds, the leading terms referred to coincide
with the elementary solution due to E. Reissner [5] for the case of a uniformly distributed
shear loading.

Section 2 deals with the wedge problem under previous consideration within the frame­
work ofthe linearized couple-stress theory. Thus the original boundary conditions are now

* This investigation was conducted under Contract Nonr-220(58) with the Office of Naval Research in
Washington, D.C.
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supplemented by the requirement of vanishing couple-tractions on the wedge faces, while
the classical field equations of plane strain are replaced by their counterpart in the modified
theory. The modified quarter-plane problem is no longer amenable to a Mellin-transform
technique. With the aid of results established in [2J, however, it is reducible to a one­
dimensional integral equation by superposition of the solutions to two half-plane problems
that correspond to initially unknown distributions of shearing tractions. Further, this
integral equation is shown to possess a solution the properties of which assure the absence of
the corner singularities predicted by the classical theory: according to the modified theory
all stresses and couple-stresses, as well as the rotation, remain finite and continuous in the
closure of the quarter-plane, i.e. up to the apex of the wedge.

Finally, at the end of Section 2, we show that the analogue of Reissner's problem
(uniform shear loading) in the couple-stress theory admits an elementary pseudo-solution,
whose rotation and couple-stress field become unbounded at the wedge corner.

1. SOLUTION OF THE PROBLEM IN THE CLASSICAL THEORY. THE
CLASSICAL CORNER SINGULARITY

Let (Xl' x 2 ) be two-dimensional rectangular cartesian coordinates and let D be the
quarter-plane (see the diagram on the left in Fig. I) defined by

D = {(X I ,x2)IO < XI < 00,0 < X2 < oo). (1.1)

FIG. I. Quarter-plane problem and auxiliary half-plane problems.

The classical plane-strain problem to be considered presently-referred to the cartesian
coordinates (Xl' x 2 ) and cast in terms of Airy's stress function-may be formulated as
follows:

We are to find an Airy function ¢ satisfying the biharmonic equation

(1.2)

on D, such that the stress field
(1.3)*

• Greek subscripts are understood to range over the integers (1,2). Summation over repeated subscripts is
implied and subscripts preceded by a comma indicate partial differentiation with respect to the corresponding
cartesian coordinate. Observe that (1.3) imply the symmetry of the stress tensor.
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in which eYII denotes the components ofthe two-dimensional alternator, meets the boundary
conditions

'tll(O, x 2 ) = 0,

't21 (X I ,0) = 0,

't dO, X2) = p(X2)

't22(X I ,0) = °
(0 ~ X 2 < oo),}

(0 ~ XI < (0),
(1.4)

where p is a given load function, assumed to be continuously differentiable and absolutely
integrable on [0, (0); in addition, the stresses (1.3) are to conform to the regularity condi­
tions at infinity

(1.5)

(1.6)

Once <jJ is known, the rotation field is obtainable by integration of the familiar relations

I-v
W II = --epIlV

2<jJp,
'2/1 '

provided /1 and v designate the shear modulus and Poisson's ratio, respectively. Further,
the associated displacements (in which we have no particular interest) may then be found
by integrating the appropriate displacement-stress relations.

The foregoing boundary-value problem is most conveniently attacked in polar co­
ordinates (r, 0) introduced through

XI = r cos 0, X 2 = r sin 0 (0 ~ r < 00, °~ 0 < 2n) (1.7)

and by recourse to the Mellin transform. To this end we recall first that (1.2), (1.3), (1.4), (1.5),
(1.6) in polar coordinates appear as

on (0, (0) x (0, n12) , (1.8)*

(1.9)

'teir, n12) = 0, Tre(r, n12) = - p(r) (0 ~ r < (0), }

Tee(r, 0) = 0, 'tre(r,O) = ° (0 ~ r < (0),

't rr =o(1), 'tee = 0(1), 'tre = 0(1) asr-+oo,

ow _ I-v 0 V2<jJ ow = I-v r~V2<jJ.
a;: - - 2W oe ' oe 2/1 or

(1.10)

(1.11)

(1.12)

Iffis a function defined and suitably regular on [0,(0), we denote the Mellin transformt
offby

ff{f;s} = tOO f(r)r- I dr, (1.13)

• Note that 4> is now regarded as a function of (r, 0).
t See Doetsch [6] and Titchmarsh [7] for the theory ofthe Mellin transform. Formal expositions of the theory,

with applications to elastostatics, are contained in the monographs by Tranter [8] and Sneddon [9]. A complete
bibliography of the extensive literature on the use of the Mellin transform in connection with two-dimensional
wedge problems in elasticity theory is beyond the scope of this paper; references up to 1958 may be found in [10).
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s being the (complex) transform parameter. We now write $(s, 0), T,,(S, 0), Tolis, f), Trli(S, 0),
6.>(s, 0), and pes), in this order, for the Mellin transforms with respect to r of 4>(r, 0), r2t rr(r, 0),
r2too(r, 0), r2'rli(r, 0), r2w(r, 0), and r2p(r). Accordingly,

$(s, 0) = LX) 4>(r, O),s- I dr, Trr(S,O) = [0 ,,,(r, O)r' + I dr etc.,I
(1.14)

W(s,O) =JOOC w(r, O)r'+ I dr, pes) =fOOC p(r)r' + I dr.

A formal application of the Mellin transform to (1.8), (1.9), (LlO), and (Ll2) then yields*

(0 < 0 < nI2),

subject to the transformed boundary conditions

(1.15)

(1.16)

Trli(S, n12) = -pes), (Ll7)

together with

" _ I-v [d
3

2dJ"
w(s, 0) - 21L(s + 2) de3 + s de 4>(s, 0). (1.18)

The boundary-value problem governed by (1.15), (Ll6), (Ll7) is elementary and (1.15)
to (1.18) lead to the following results in the transform domain:

"p(s) .
4>(s, 0) = 2(s + l)L\(s) [a l (s, e) - a2(s, e) cos(2e)+ a3(s, e) sm(20)],

A pes) .
'rr(S, e) = 2L\(s) [ - sal (s, 0)+ (s + 4)a2(s, 0) cos(2e) - (s + 4)a3(s, e) sm(2e)],

A P(s) .
rOIi(s, e) = 2L\(s) [sal (s, 0) - sa2(s, 0) cos(2e) + sa3(s, e) sm(2e)], (1.19)

A pes) .
rrli(s,O) = 2L\(s) [ - sa4(s, e) + (s + 2)a3(s, 0) cos(20)+ (s + 2)a2(s, 0) sm(2e)],

" (l-v)p(s)
w(s,O) = - 1LL\(s) [a3(s, 0) cos(20) + a2(s, e) sin(2e)],

* See [8], art. 4.4 for details.
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in which

(1.20)

at (s, 0) = (s + I) sin(s1t/2) cos(sO) - (s +2) cos(s1t/2) sin(sO),

a2(s,O) = (s + I) sin(s7t/2) cos(sO) - s cos(s7t/2) sin(sO),

a3(s,O) = s cos(s7t/2) cos(sO) + (s + I) sin(s7t/2) sin(sO),

a4(s, 0) = (s +2) cos(s7t/2) cos(sO) + (s + I) sin(s7t/2) sin(sO),

d(s) = (s + 1)2 - cos2(s7t/2).

This completes the solution of the problem in the transform domain. We appeal next to
the inversion theorem for the Mellin transform· and recall that (1.13) implies

I JC+iO::
f(r) = -2. .9""{f;s}r-·ds

7t1 c-ice
(0 < r < oc) (1.21)

for every choice of c such that rC
- 1 f(r) is absolutely integrable on [0, (0), provided f is

continuously differentiable on [0, oo~ From (1.14), (1.21) one draws formally that

I JC+iCC .
¢(r.O) = -2. ¢(s, O)r -. ds,

7t1 c-icc

r,,(r,O) = -2
1 .JC+ioo f,,(s,0)r-·- 2 ds etc.,
7t1 C -iCJJ

(1.22)

I JC+i:x>
w(r,O) = -2. W(s,0)r-·- 2 ds.

7t1 C -ix

The path of integration Re(s) = c in (1.22) must evidently lie within a common strip of
regularity in the s-plane of the integrands in (1.22). This leads us to examine the behavior in
the s-plane of pand of the functions defined by (1.19), (1.20).

Because of the assumed regularity of the load function p on [0, (0), the integral in the
last of (1.14) is absolutely convergent for - 2 < Re(s) :s; - I. Hencet fi(s) is analytic on the
open strip - 2 < Re(s) < - I. Also, the regularity of p assures that

p(r) = p(O)+ O(r) as r -- 0, as r -- ·x. (1.23)

(1.24)( - 3 < Re(s) < - I),

This enables one to provet that fi(s) may be continued analytically on to the strip
- 3 < Re(s) < - 1, except for a simple pole at s = - 2 with the residue P(O). Thus,

p(O)
fi(s) = -2+g(s)

s+

where g is a function analytic on - 3 < Re(s) < - I. Since all the functions defined in (1.20)
are entire, it follows from (I. t9) and the preceding conclusions regarding p(s) that c1>(s, (J),
f,,(s,O), 198(S, 0), 1'9(S, 0), and W(s, 0) are analytic on - 3 < Re(s) < - I except possibly for
poles that can occur only at the pole of p(s) and the zeros of d(s). Now d(s) vanishes on
- 3 < Re(s) < - I only at s = - 2, where it has a simple zero. Consequently each of the
integrands in (1.22) has at most one pole on -3 < Re(s) < - t, which must be situated at

• See [7], p. 46, Theorem 28.
t See [6]. volume I, p. 59 and p. 144.
t See [6]. volume 2, chapter 5, section 2 and chapter 4, section 2.
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s = - 2. Indeed, one finds that $(S,O), Trr(S,O), T88(S,O), Tr8(S,O) all have simple poles at
S = - 2, whereas W(s, 0) has a pole of the second order.

In view of the foregoing results we choose the path of integration for the inversion
integrals (1.22) by taking

c=-I-e (0 < e < 1). (1.25)

(1.27)

This choice of c insures that the path of integration lies within the common strip of regu­
larity - 2 < Re(s) < - 1 of all functions concerned and, by virtue of the inversion theorem
cited earlier, guarantees that p(r) is recovered from (1(s) through

1 rC + iOO

p(r) = 2ni J
C

-

iOO

(1(s)r- s
-

2 ds (0 < r < 00). (1.26)

Moreover, (1.26) fails to hold true for c < - 2 if p(O) =1= 0, as is apparent from (1.24). These
observations motivate the choice of c made in (1.25).

It is not difficult to verify the formal solution given by (1.22), (1.25) together with (1.19),
(1.20). Thus one can show that the integrals (1.22), with c determined by (1.25), represent
real-valued functions, which possess continuous partial derivatives ofall orders throughout
the quarter-plane D; further, the functions cjJ, !rn !88' !r8' ill so defined satisfy the field
equations (1.8), (1.9), (1.12) on D and obey the boundary conditions (1.10), as well as the
regularity requirements at infinity (1.11). In the interest of brevity we omit the details of this
a posteriori validation of the solution deduced earlier.

We turn now to an examination of the asymptotic behavior of the stress and rotation
field in the vicinity of the wedge corner, which constitutes our main objective. To this end
we consider first the stress !rr and note on the basis of the residue theorem that

JTr.(S, O)r- S
-

2 ds = 2niirr(r,O)- i JTrr(S, O)r- S
-

2 ds,
r,(b) k= 2 rk(b)

where rk(b) (k = 1,2,3,4) are the four sides of the rectangular contour depicted in Fig. 2*,
while irr(r, 0) is the residue of the integrand in (1.27) at s = - 2. It is readily shown from

T)

-31'"E+ib
rr2

-,-.+ib s- PLANE

s =( +iT)

0<. <1
o <b < co

r3",

-3 -2 -\ 0

,..-r,

-3+.-ib -,-.-ib

r)
FIG. 2. Path of integration used in the asymptotic analysis of comer singularities.

* Note that r k also depends on E, which is however regarded as fixed.
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(1.28)as r --+ O.

(1.19) that the integrals over r 2(b) and r 4(b) in (1.27) tend to zero as b --+ 00 and that the
integral over r 3(b) is 0(1) as r --+ O. Consequently (1.22), (1.27) yield

trr(r, O) = -2
1

. lim J Trr(S, O)r -s -2 ds = Trr(r, 0) + 0(1)
7[1 b-oo r,(b)

Proceeding in a strictly analogous manner in connection with t66, t r6' and w one arrives,
upon computing the required residues at s = - 2, at the following asymptotic estimates in
the limit as r --+ 0:

trr(r,O) = p;O) {20+sin(20)-~[1 +COS(20)]} +0(1),

t66(r,O) = p;O) {20-Sin(20)-~[I-COS(20)]}+0(1),

t r6(r, 0) = p~Ol~ sin(20) - 1+ cos(20)] + o(1),

(1- v)
w(r,O) = ---p(O) log r+o(l)

p.

Equations (1.29) furnish for the cartesian components of stress and for w, as r --+ 0,

(129)*

p(O) .
t l1(x l , x 2 ) = T[ -7[ + sm(20) + 20] +0(1),

tdx l ,X2 ) = P;O) [ -sin(20)+20] +0(1), tdx l ,X2 ) = p(0)sin20+0(1), (1.30)

(1- v)
w(X I ,X2) = ---p(O)logr+o(I).

p.

As is evident from (1.29), (1.30), if p(O) =F 0, the stress field displays a finite discontinuity at
the wedge corner, while the rotation field becomes logarithmically unbounded as r --+ O.

The leading terms in (1.30) by themselves satisfy the stress equations of equilibrium and
compatibility on D; they give rise to a uniform shear loading of intensity p(O) on the face
Xl = 0, 0 ~ X2 < 00 and otherwise to identically vanishing surface tractions. This particu­
lar solution of the field equations coincides with the singular solution exhibited by
E. Reissner [5].

2. SOLUTION OF THE PROBLEM IN THE COUPLE-STRESS THEORY

We consider next the analogue in the couple-stress theory ofplane straint of the classical
problem treated in Section 1. The field equations to be satisfied by the generalized Airy

• We omit in the formula for w an unessential additive constant which corresponds to a rigid rotation of the
entire body.

t See Mindlin [IIJ for an ad-hoc elementary discussion of the modified theory of plane strain. A more detailed
discussion of this theory within the context of the three-dimensional couple-stress theory is contained in [2]. The
two-dimensional theory is summarized in indicial notation in [3].
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stress functions 4> and t/t in cartesian coordinates take the form

2(1-v)ll£"pVl 4>.P = WVlt/t-t/t),,,, (2.1 )

provided { is the characteristic material length parameter, and (2.1) imply the uncoupled
equations

(2.2)

We are at present required to construct a solution of (2.2) obeying (2.1) on the quarter­
plane D, such that the ordinary stresses T"p and the couple-stresses (JIZ' derived from 4>, t/t by
means of

(Jcx = l/J.Gt~ (2.3 )

meet the boundary conditions

Lll(0,X2) = 0,

L21(X I ,O) = 0,

L dO, x 2 ) = p(x2 ),

T22(X I ,0) = 0,

(Jl(O,X l ) = °
(J2(X l , 0) = °

(0 :S X 2 < ex), }
(2.4)

(O:s Xl < ex),

and the regularity conditions at infinity

(Ia = 0(1) (2.5)

Here we assume the given load function p, together with its first two derivatives, to be con­
tinuous and absolutely integrable on [0, ex). Once t/t is known, the desired rotation field is
obtainable by integration of the relations

4J1PW,a = t/t,IZ' (2.6)

The foregoing boundary-value problem-in contrast to its classical counterpart con­
sidered earlier--does not yield to a Mellin-transform technique because of the involvement
of the Helmholtz operator in (2.1) and (2.2). The present quarter-plane problem may, how­
ever, be reduced to a one-dimensional integral equation with the aid of two auxiliary half­
plane problems.*

Thus let D(k) (k = 1,2) be the two half-planes (see Fig. 1) defined by

(2.7)

(2.8)

(2.9)( - 00 < Xl < 00).

(-00 < X2 < 00),

D(ll = {(Xl , x2)10 < Xl < 00, -00 < X2 < oo}, }

D(2) = {(X I ,x2)1-00 < Xl < 00, °< Xl < ex)},

so that D is the intersection of D(l) and D(2). Further, let 4>(k J, t/t1k), 'W, (J~kJ, and W 1kJ (k = 1,2)
satisfy the field equations (2.1), (2.3), (2.6) on D(k), meet the regularity conditions at infinity
(2.5), as well as the respective boundary conditions

rW{O, x 2) = 0, T~ll(o, Xl) = p(l)(x l ), (J~1)(0, Xl) = °
T<f{(XI,O) = p(l)(X I ), rW(Xl,O) = 0, (J~l)(X1>O) = 0

Accordingly each of the half-plane problems introduced above corresponds to shearing
tractions along the bounding edge and otherwise to vanishing surface tractions. We restrict
the load functions p(kl to be even, i.e.

(-oo<X<oo), (k = 1,2). (2.10)

* cr. [12J, Section 3.24, where the analogous reduction scheme is used in connection with a classical quarter­
plane problem.
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The solutions of the preceding auxiliary plane-strain problems for D(1) and D(2) were
established in [2]* on the assumption that p(k) is absolutely integrable and piecewise
smooth on [0, (0). We cite below from [2] the results obtained as far as the stress, coupre­
stress, and rotation fieldt is concerned.
On D(1):

On D(2):

(2.11 )t

(2.12)

2 frO- - b2(X2, s; 1)P<2l(s) sin(x1s) ds,
n 0

2 frO-- b1(X2,S;l)p<2)(S)cos(x1s)ds,
n 0

2 frO-- b(x2,s;I)P<2)(s)cos(x1s)ds.
n 0

• The present half-plane problems are in fact a special case of the problem solved in Section 3 of [2]. Note,
however, that the coordinate frame associated with the second problem is obtained from the frame used in [2] by
a rotation through n12.

t The rotation field was not given explicitly in [2]; it is, however, immediately deducible from the results
presented there.

t For the sake of clarity we make explicit from here on the dependence upon 1of all functions considered. Thus
we write ,~~)(x l' X 2 ; I) in place of ,~~)(xl' x 2)' etc.
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Here P<k) designates the Fourier cosine-transform of p(k), given by

(0 :::;; s < (0), (k = 1,2). (2.13)

The auxiliary functions bap , ba , b appearing in (2.11) and (2.12) are accounted for through

ex
b11(X, s; /) = {xs exp( - xs)+4(l- vWs2[exp( -ax/I)-exp( - xs»)} {r

bdx, s; I) = {(2 -xs) exp( - xs)-4(1- v)fls2[exp( - exx/I)- exp( - xS»)}~'

1
bdx, s; I) = {ex(l- xs) exp( - xs)-4(1- vWs2 [ls exp( - exx//)- ex exp( - xS)]}p'

ex
b21 (x, s; I) = {(l- xs) exp( - xs) - 4(1- v)ls[ex exp( - ax/I)-Is exp( - xs)]} p' (2.14)

ex
bl(x,s;/) = 4(I-vWs[exp(-exx/I)-exp(-xs»)p'

1
b2(x, s; I) = 4(1- vWs[/s exp( - ax/I) -- a exp( - xs») P'

I-v 1
b(x,s;l) = -~[lsexp(-ax/I)-exexp(-xs)]p'

in which

(2.15)

Now set

(2.16)

and note that the functions 4>, tap, (la' and w so defined satisfy the field equations (2.1), (2.3),
(2.6), as well as the regularity conditions at infinity (2.5), for every admissible choice of the
load functions p(l) and p(2). We therefore seek to determine p(k) (k = 1,2) in such a way that
tl1.P and (l11. meet also the boundary conditions (2.4). In view of (2.8), (2.9), (2.11), (2.12), and
(2.14), conditions (2.4) are fulfilled if and only if

(0:::;; x < (0),

(0:::;; x < (0),

(2.17)

(2.18)
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(2.19)(0 ~ u < (0),

in which pt.k) is the Fourier cosine-transform of p(k) introduced in (2.13). Applying the
transform to (2.18) one obtains, on interchanging the order of integration·,

pt.2)(U; 1) = - [0 L(u, t; 1)pt.l)(t; I) dt

where

2JooL(u, t; I) = - cos(UX)b21(x, t; I) dx.
7t 0

(2.20)

Next, we substitute for pt.2) from (2.19), (2.20) into (2.17), apply the cosine transform to the
resulting equation and thus reach, after changing the order of the ensuing integrations,

(0 ~ u < (0) (2.21)

with

4Joo Joo JooK(u, t; I) = 2 ds cos(UX)b21 (x, s; I) dx cos(Sy)b21(y, t; 1) dy.
7t 0 0 0

(2.22)

As is apparent, the original quarter-plane problem under consideration has now been
reduced to the one-dimensional integral equation (2.21): if pt.l) satisfies (2.21) and pt.2) is
determined from (2.19), the solution of the problem is furnished by (2.16) with T~~, (1'~k),

W(k) (k = 1,2) given by (2.11), (2.12) and (2.14), (2.15).
Equation (2.21) may, by an elementary change of variables, be transformed into a

standard equation of Fredholm's second kind. For our particular purpose, however, it is
more convenient to deal directly with (2.21). Our next objective is to show that for 1> 0
this equation admits a unique solution pt.l) which is absolutely integrable on (0, (0) and
that the associated pt.2) resulting from (2.19) has the same regularity property.t For this
purpose we first obtain simplified representations for the kernels Land K presently given
by (2.20) and (2.22), respectively. Since

J00 exp(-sx)cos(ux)dx = -2-
S
-2 (s > 0), }

o s +u

J
00 S2 _u2

xexp(-sx)cos(ux)dX=(2 2)2 (s>O),
o s +u

(2.23)

one draws from (2.20) and (2.14), (2.15) that

4 u2t rt.(lt)
L(u, t; I) = ~ (u2+ t2)2 P(lt) y(u, t; I)

for all (u, t) in (0, (0) x (0, (0), where

2(1- vW(u2 + t 2
)

y(u, t; I) = 1- 1+12(u2 + t2) ,

(2.24)

(2.25)

• This formal manipulation, as well as subsequent reversals of iterated integrations, may be justified a posteriori
t This existence theorem is invalid if I = 0; the hypothesis I > 0 is taken for granted throughout the succeeding

analysis.
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while a(lt), f3(lt) are given by (2.15). Similarly, carrying out the integrations with respect to
x and y in (2.22) with the aid of (2.23), one arrives at

(2.27)

(2.26)

(0 < u < 00, 0< t < 00),

16 [<Xl u2ts3 a(ls)a(lt)
K(u, t; I) = n2 J0 (u2 + S2)2(t2 + S2)2 f3(ls)f3(lt) y(u, s; I)y(t, s; I) ds

for all (u, t) in (0, 00) x (0, 00).
Next we establish certain properties ofthe kernels Land K, which will be needed later on.

lt is easily confirmed from (2.15), (2.25) that

I
a(lt) I
f3(lt) y(u, t; l) < 1

provided 0 ~ v ~ l From (2.24), (2.27) follows

J00 4 foo u
2t du

lL(u, t; 1)ldu < - (2 2)2 = 1
o n 0 u +t

(0 < t < 00). (2.28)

(0 < u < 00, 0< t < 00). (2.29)

But

(O<t<oo,O<s<oo), (2.30)

and (2.29), (2.30) yield

16 foo u2 ds
IK(u, t; 1)1 < 2" (2 2f

n 0 u +s
4
nu

(0 < U < 00, 0 < t < 00). (2.31)

Further, from (2.29) one has

J00 16J00 f oc· u2 ts3 ds
IK(u, t; 1)1 du < du (2 2)2( 2 2fo 0 0 u +s t +s

(0 < t < 00). (2.32)

(2.33)(0 < t < 00).

The iterated integral in (2.32) can be evaluated by setting u = r cos e, s = r sin e and is
found to have the value n2/16. Thus

J0

00

IK(u, t; 1)1 du < 1

Similarly we obtain

f
ro 4

IK(u, t; 1)1 dt < 2"
o n

(0 < u < 00). (2.34)

We now return to (2.21) and establish the following existence theorem: The integral
equation

f(u) - L" K(u, t; I)f(t) dt = g(u) (0 < U < 00), (2.35)
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where

f(u) = p1)(u; 1), g(u) = p(u) (0 < u < (0), (2.36)

for every fixed I > °and every fixed v in [0, tJ has one and only one solution that is absolutely
integrable on (0, (0).

To prove* this theorem we first conclude from (2.13), in view of the assumed regularity
propertiest ofthe load function p, that g is continuous on [0, (0) and, through integration by
partst, that g(u) = O(u - 2) as u ~ 00. Therefore, g is absolutely integrable on (0, (0).

Let h be any function absolutely integrable on (0, (0). Then, by (2.33) and (2.34), after a
permissible interchange in the order of the integrations,

tOO du tOO IK(u, t; 1)llh(t)1 dt = tOO Ih(t)1 dt tOO IK(u, t; 1)1 du < tOO Ih(t)1 dt, (2.37)

whence there is a number p in (0, 1), independent of h, such that

J0
00

du J0
00

IK(u, t; 1)llh(t)1 dt ~ p J0
00

Ih(t)1 dt

Let pnl (n = 0,1,2, ...) be the sequence of functions defined by

(2.38)

POl(U) = g(u), f(n+ l)(u) = g(u)+ J; K(u, t; l)pnl(t) dt (0 < u < (0). (2.39)

It follows from (2.38), (2.39) by induction that

J
OO 1 n+1Joo

!f(nl(u)1 du ~ ~ p Ig(u)1 du,
° -p °

whereas (2.38), (2.39), (2.40) and induction assure that

J00 If(n+k)(u)- pn)(u)1 du ~ pn+l(l- l )J 00 Ig(u)1 duo
° I-p °

(2.40)

(2.41 )

Thus§ pn) converges in the mean to a function f that is absolutely integrable on (0, (0).
We show further thatpnl converges to f pointwise on (0, (0). Indeed, by (2.39), (2.41)

and (2.31),

If(n+ 1+k)(u)_ pn+ ll(U)1 ~ ~pn+ 1(1- pk)J00 Ig(t)1 dt (0 < u < (0), (2.42)
nu I-p °

so that

lim f(n)(u) = f(u)
n-+ 00

(0 < u < (0). (2.43)

• The proof given below is similar to one given in Section 3.24 of [12] in connection with a closely related
integral equation.

t See the assumptions on p immediately following (2.5).
t See also Erdelyi [13], p. 47.
§See Titchmarsh [14], Sections 12.5 and 12.51.
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To see thatfsatisfies (2.35), let k -> 00 in (2.41). Taking this limit under the integral sign,
as is legitimate*, we obtain

rOO If(u) _ f(n)(u)1 du :::;; pn + 1 roo 19(u)1 du. (2.44)
Jo I-pJ o

Now, from (2.39), (2.31) follows,

If(u)- tOO K(u, t; I)f(t) dt - g(u)1 = If(u)- pn)(u)_ tOO K(u, t; I)[f(t)- pn- l)(t)] dtl

:::;; If(u) - pn)(u)1 +~ [ 00 If(t) _ f(n - l)(t)1 dt (0 < u < (0). (2.45)
1CU J0

But the right-hand member of (2.45) is arbitrarily small for sufficiently large n because of
(2.43), (2.44), which verifies that f conforms to the integral equation (2.35). Finally, the
uniqueness of the solution f is readily inferred from (2.35) with the aid of (2.33). This com­
pletes the proof.

That P<2) obtained from (2.19) is also absolutely integrable follows immediately. For,
from (2.19), (2.28) one draws

J0

00
1p<2)(U; 1)1 du :::;; tOO du tOO IL(u, t; 1)11p<l)(t; 1)1 dt < tOO Ip<l)(t; 1)ldt. (2.46)

(2.48)(0 < t < (0).

We are now in a position to turn to our main objective, which is to examine the asymp­
totic behavior in the vicinity of the wedge corner of the stress, couple-stress, and rotation
fields given by (2.11) to (2.16). According to (2.14), (2.15), ba,,(x, s; I), ba(x, s; l) and b(x, s; I) are
continuous and bounded functions for all (x, s) in [0, (0) x [0, (0) and I > O. Therefore, and
since P<k) (k = 1,2) determined by (2.19), (2.21) are now known to be absolutely integrable on
(0, (0), the integrals in (2.11) and (2.12) define functions of (xl' x 2 ) that are continuoust on
[0, (0) x [0, (0). This fact enables us to conclude with the aid of (2.11) to (2.18) and the
inversion theorem for the Fourier cosine-transform that as r -> 0, for fixed I > 0,

raP(x 1 ,x2 ;/) = o(l)(rap # rd, rdx1 ,x2;/) = P(0)+0(1),}
(2.47)t

O'a(x 1 , x 2 ; I) = 0(1), W(Xl' X2; I) = 0(1).

Comparing (2.47) with (1.30), we note that the discontinuities in rap and the logarithmic
singularity in W at the wedge corner predicted by the classical solution are no longer present
when couple-stresses are taken into account.

It may be instructive to point out where the argument leading to the conclusions (2.47),
which are restricted to I > 0, breaks down when I = 0, i.e. in the classical theory. To this end
we observe on the basis of (2.26), (2.15), (2.25) that

tOO IK(u, t; 0)1 du = too K(u, t; 0) du = 1

Hence (2.38) now holds with p = 1 and the remainder of the existence proof given earlier
becomes invalid. In fact, we now show that the integral equation (2.21) with I = 0 does not

* See Titchmarsh [14], Section 12.52.
t See, for example, Bromwich [15], Sections 171, 172.
: We again omit an additive constant in w, which corresponds to a rigid rotation.
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(2.49)(0 ~ u < (0).

admit an absolutely integrable solution if P(O) =F 0, i.e. if the given shear loading fails to
vanish at the apex. Suppose, contrariwise, there exists p(ll-absolutely integrable on
(0, 00 )---such that

p(l)(u; 0) - too K(u, t; O)p(l)(t; 0) dt = p(u)

Then, clearly,

too P<ll(u;O)du- tOO p<l)(t;O)dt tOO K(u,t;O)du = too p(u)du. (2.50)

But (2.50), (2.48), in view of the inversion theorem for the Fourier-cosine transform*,
imply

(2.51 )f
OO foo foo 1tp(u)du == du p(x)cos(ux)dx = -P(O) = 0,

o 0 0 2

which contradicts the hypothesis P(O) =F O.
In the preceding analysis the load function p entering the boundary conditions (2.4) was

required to vanish at infinity. Assume now P(X2) in (2.4) is replaced by a constant Po =F 0,
so that the applied shearing tractions are uniformly distributed for 0 ~ X2 < 00. In this
instance the regularity requirements (2.5) need to be relinquished. The problem thus arising
is the counterpart in the modified theory of Reissner's [5] problem in the classical theory of
plane strain. We presently employ Reissner's solution to generate an elementary pseudo­
solution for the case of a uniform shear loading in the couple-stress theory.

For this purpose we recall from Section 1 that Reissner's results, as far as the stress and
rotation fields are concerned, are given by the leading terms in (1.30) and thus take the form

(1- v)
W(X 1,X2) = ---pologr.

J.l

Since W in (2.52) is independent of e, it is at once apparent that the normal derivative of this
rotation field at the wedge boundary vanishes identically. It therefore follows from a
theorem established in [3] (p. 74) that rafJ and W of(2.52), supplemented by the couple-stress
field

(2.53)

conform to the field equations in the modified theory of plane strain and to the boundary
conditions

r 11(O, X2) = 0,

r2l(x l ,0) = 0,

r 12(O, X2) = Po,

r22(x l ,0) = 0,

O"l(0,X2) = 0

0"2(X l ,0) = 0

(0 ~ X 2 < (0), }
(2.54)

(0 ~ Xl < (0).

• See Titchmarsh [7], p. 13.
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The explicit representation of (ja furnished by (2.53) and the last of (2.52) is given by

2 cos e
-4(1-v)1 po--,, (2.55)

The solution (2.52), (2.55) (whose stress and rotation fields coincide with Reissner's solu­
tion) displays a discontinuity in the ordinary stress field and a logarithmic singularity in the
rotation field at the apex, while its couple-stress field becomes unbounded as , -+ 0 to the
order 0(,- 1). Since this singular behavior is inconsistent with the conclusions (2.47),
according to which all fields under present consideration should be finite and continuous up
to the wedge corner, it is clear that (2.52), (2.55) must be rejected as a physically irrelevant
pseudo-solution to the analogue of Reissner's problem in the couple-stress theory. Pseudo­
solutions of the same type to other singular problems in the modified theory were discussed
in [3].
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AOcTpaKT-J'lccneA}'eTCll 3li.n;a'la opTOrOHaJIhHOrO ynpyroro KlIHHa BnepeMemeHHJIX IlJIOCKOrO COCTOllHHll.
O.n;Ha cTopoHa :noro KJIHHa 3lirpY)l(eHa npoH3BOJIhHbIMH CHJIaMH c.n;BHra npH oTCyCTBHH .n;pymx Harpy30K.
3Ta 3a.n;a'la paCCMaTpHBaeTCSI B CMblCJIe KJIaCCH'lecKoA CTaTHKH ynpyroro TeJIa, KaK HBJIHHeil.HoA TeopHH
ynpyrOCTH, KOTopaSl Y'lHThIBaeT BJIHlIHHe MOMeHTHbiX HanpJl)l(eHHA. EcJIH HarpY3Ka H3MeHlIeTCSI TaK,
'lTo6h! OHa H3'1e3JIa B BepIIIHHe KJIHHa, KOHBeH~HOHaJIhHaSl TeopHll MeT pOCT yrJIOBbiX CHHrYJIJlpHOCTeA
B HanpSllKeHHlIx H nOJIe pOTaI.\HH, KOTophle npoHCXO.L\SlT B BHA}' HeCOBMeCTHMOCTH npHHllTbiX rpaHH'IHbIX
YCJIOBHA H CHMMeTpHH TeH30pa HanpSllKeHHA. 3TH CHHryJISlpHOCTH, BbipallCeHbI B 3aMKHyToM, 3JIeMeHTa­
PHOM BH,lle .n;aIOT CXO.n;HMOCTb C60nee paHHHMH pe3yJIhTaTaMH, BblBe.n;eHHbIMH 3.PeACCHepoM,!\JIll CJIY'!all
nOCTOSlHHOA Harpy3KH c.n;BHrOM. )],aJIee nOKa3liHO, 'ITO CHHryJIllpHOCTH H3'1e3liIOT COrJIaCHO TeopHH MOMeHT­
HbiX Hanpll)l(eHHA, B KOTopoA He Tpe6yeTcSI .L\aJIee, '1TooM TeH30p Hanpa)l(eHHlI lIBJIlIJICSI cHMMeTPH'IecKHM.


